rNDV can be effectively captured and purified from clarified cell culture without a load conditioning step and that the CIMmultus QA column is not sensitive to typical cell culture pH and conductivity variations within the investigated conditions (pH 7–8; conductivity: 5–17 mS/cm).
The use of viral vectors for vaccine, gene therapy, and oncolytic virotherapy applications has received increased attention in recent years. Large-scale purification of viral vector-based biotherapeutics still presents a significant technical challenge. Chromatography is the primary tool for the purification of biomolecules in the biotechnology industry; however, the majority of chromatography resins currently available have been designed for the purification of proteins. In contrast, convective interaction media monoliths are chromatographic supports that have been designed and successfully utilized for the purification of large biomolecules, including viruses, viruslike particles, and plasmids. We present a case study on the development of a purification method for recombinant Newcastle disease virus directly from clarified cell culture media using strong anion exchange monolith technology (CIMmultus QA, BIA Separations). Resin screening studies showed at least 10 times higher dynamic binding capacity of CIMmultus QA compared to traditional anion exchange chromatography resins. Design of experiments was used to demonstrate a robust operating window for the purification of recombinant virus directly from clarified cell culture without any further pH or conductivity adjustment of the load material. The capture step was successfully scaled up from 1 mL CIMmultus QA columns to the 8 L column scale and achieved a greater than 30-fold reduction in process volume. Compared to the load material, total host cell proteins were reduced by more than 76%, and residual host cell DNA by more than 57% in the elution pool, respectively. Direct loading of clarified cell culture onto a high-capacity monolith stationary phase makes convective flow chromatography an attractive alternative to centrifugation or TFF-based virus purification procedures.
Rogerson, T, Xi, G, Ampey, A, Borman, J, Jaroudi, S, Pappas, D, et al. Purification of a recombinant oncolytic virus from clarified cell culture media by anion exchange monolith chromatography. Electrophoresis. 2023; 1–11. https://doi.org/10.1002/elps.202200270